Anda belum login :: 23 Nov 2024 15:28 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Integrated Feature and Architecture Selection
Oleh:
Steppe, J. M.
;
Bauer, K. W., [Jr.]
;
Rogers, S. K.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 4 (1996)
,
page 1007-1014.
Topik:
Architectures
;
integrated feature
;
architecture selection
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, we present an integrated approach to feature and architecture selection for single hidden layer - feedforward neural networks trained via backpropagation. In our approach, we adopt a statistical model building perspective in which we analyze neural networks within a nonlinear regression framework. The algorithm presented in this paper employs a likelihood - ratio test statistic as a model selection criterion. This criterion is used in a sequential procedure aimed at selecting the best neural network given an initial architecture as determined by heuristic rules. Application results for an object recognition problem demonstrate the selection algorithm's effectiveness in identifying reduced neural networks with equivalent prediction accuracy.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)