Anda belum login :: 27 Nov 2024 18:05 WIB
Detail
ArtikelTo Log or Not to Log : Bootstrap as An Alternative to the ParametrIc Estimation of Moderation Effects In the Presence of Skewed Dependent Variables  
Oleh: Dean, Michelle A. ; Russell, Craig J.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: Organizational Research Methods vol. 3 no. 2 (2000), page 166-185.
Topik: variables; bootstrap; parametric estimation; dependent variables
Fulltext: 166[1].pdf (133.0KB)
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: OO3.1
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWhen gross deviations from parametric assumptions are observed, conventional data transformations are often applied with little regard for substantive theoretical implications. One such transformation involves using the logarithm of positively skewed dependent variables. Log transformations were shown to severly decrease estimates of true moderator effects using moderated regression procedures in a monte carlo simulation. Estimates of moderator effect sizes were substantially better estimates of the true latent moderator effect (i. e. larger by a multiple of 2,6 to 534) when estimated using a simple percentile bootstrap procedure in the original, positively skewed data. Conclusions with regard to the presence or absence of a true moderator effects using a simple bootstrap procedure were unaffected by the violation of parametric assumptions in the original,posiitvely skewed data. In contrast, moderated regression analysis performed on a log - transformed dependent variavle severely increased type II error. Implications are drawn for applied psychological and management research.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)