Anda belum login :: 27 Nov 2024 02:11 WIB
Detail
ArtikelPredictive Analytical and Thermal Modeling of Orthogonal Cutting Process-Part I : Predictions of Tool Forces, Stresses and Temperature Distibutions  
Oleh: Ozel, Tugrul ; Karpat, Yigit
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: Journal of Manufacturing Science and Engineering vol. 128 no. 2 (Mei 2006), page 435-444.
Topik: thermal field; predictive analytical; thermal modeling; orthogonal cutting; tool forces; stresses; temperature distributions
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: JJ93.8
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelIn this paper, a predictive thermal and analytical modeling approach for orthogonal cutting process is introduced to conveniently calculate forces, stress, and temperature distributions. The modeling approach is based on the work material constitutive model, which depends on strain, strain rate, and temperature. In thermal modeling, oblique moving band heat source theory is utilized and analytically combined with modified Oxley's parallel shear zone theory. Normal stress distribution on the tool rake face is modeled as nonuniform with a power - law relationship. Hence, nonuniform heat intensity at the tool-chip interface is obtained from the predicted stress distributions utilizing slip line field analysis of the modified secondary shear zone. Heat sources from shearing in the primary zone and friction at the tool - chip interface are combined, heat partition ratios are determined for temperature equilibrium to obtain temperature distributions depending on cutting conditions. Model validation is performed by comparing some experimental results with the predictions for machining of AISI 1045 steel, AL 6082 - T6, and AL 6061 - T6 aluminum. Close agreements with the experiments are observed. A set of detailed, analytically computed stress and temperature distributions is presented.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)