Anda belum login :: 23 Nov 2024 09:43 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
DSP-Based Hierarchical Neural Network Modulation Signal Classification
Oleh:
Kim, Namjin
;
Kehtarnavaz, N.
;
Yeary, M. B.
;
Thornton, S.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 5 (2003)
,
page 1065-1071.
Topik:
modulation
;
hierarchical neural network
;
modulation signal
;
classification
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.9
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper discusses a real - time digital signal processor (DSP) - based hierarchical neural network classifier capable of classifying both analog and digital modulation signals. A high -performance DSP processor, namely the TMS320C6701, is utilized to implement different kinds of classifiers including a hierarchical neural network classifier. A total of 31 statistical signal features are extracted and used to classify 11 modulation signals plus white noise. The modulation signals include CW, AM, FM, SSB, FSK2, FSK4, PSK2, PSK4, OOK, QAM16, and QAM32. A classification hierarchy is introduced and the genetic algorithm is employed to obtain the most effective set of features at each level of the hierarchy. The classification results and the number of operations on the DSP processor indicate the effectiveness of the introduced hierarchical neural network classifier in terms of both classification rate and processing time.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)