Anda belum login :: 23 Nov 2024 07:26 WIB
Detail
ArtikelSurface Chemistry and Characteristics Based Model for The Thermal Contact Resistance of Fluidic Interstitial Thermal Interface Materials  
Oleh: Prasher, Ravi S.
Jenis: Article from Bulletin/Magazine
Dalam koleksi: Journal of Heat Transfer vol. 123 no. 5 (Oct. 2001), page 969-975.
Topik: CHEMISTRY; surface chemistry; thermal contact resistance; fluidic; interface materials
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: JJ90.2
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelMicroprocessor powers are increasing at a phenomenal rate, which requires very small thermal resistance between the die (chip) and the ambient, if the current economical methods of conduction and convection cooling are to be utilized. A typical thermal solution in flip chip technology utilizes two levels of thermal interface materials : between the die and the heat spreader, and between the heat spreader and the heat sink. Phase change materials and thermal greases are among the most prominent interstitial thermal interface materials (TIM) used in electronic packaging. These TIMs are typically polymeric matrix loaded with highly conducting filler particles. The dwindling thermal budget has necessitated a better understanding of the thermal resistance of each component of the thermal solution. Thermal conductivity of these particle - laden materials is better understood than their contact resistance. A careful review of the literature reveals the lack of analytical models for the prediction of contact resistance of these types of interstitial materials, which possess fluidic properties. This paper introduces an analytical model for the thermal contact resistance of these types of interstitial materials. This model is compared with the experimental data obtained on the contact resistance of these TIMs. The model, which depends on parameters such as, surface tension, contact angle, thermal conductivity, roughness and pressure matches very well with the experimental data at low pressures and is still within the error bars at higher pressures.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)