Anda belum login :: 23 Nov 2024 13:54 WIB
Detail
ArtikelSelective Smoothing of The Generative Topographic Mapping  
Oleh: El-Deredy, Wael ; Vellido, A. ; Lisboa, P. J. G.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 14 no. 4 (Jul. 2003), page 847-852.
Topik: genetic mapping; mind mapping; smoothing; generative topographic; mapping
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.8
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelGenerative topographic mapping is a nonlinear latent variable model introduced by Bishop et al. as a probabilistic reformulation of self - organizing maps. The complexity of this model is mostly determined by the number and form of basis functions generating the nonlinear mapping from latent space to data space, but it can be further controlled by adding a regularization term to increase the stiffness of the mapping and avoid data over - fitting. In this paper, we improve the map smoothing by introducing multiple regularization terms, one associated with each of the basis functions. A similar technique to that of automatic relevance determination, our selective map smoothing locally controls the stiffness of the mapping depending on length scales of the underlying manifold, while optimizing the effective number of active basis functions.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)