Anda belum login :: 27 Nov 2024 09:58 WIB
Detail
ArtikelFlexible Neuro-Fuzzy Systems  
Oleh: Rutkowski, L. ; Cpalka, K.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 14 no. 3 (May 2003), page 554-574.
Topik: Neuro fuzzy; flexible; neuro - fuzzy; systems
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.7
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelIn this paper, we derive new neuro - fuzzy structures called flexible neuro - fuzzy inference systems or FLEXNFIS. Based on the input-output data, we learn not only the parameters of the membership functions but also the type of the systems (Mamdani or logical). Moreover, we introduce : 1) softness to fuzzy implication operators, to aggregation of rules and to connectives of antecedents ; 2) certainty weights to aggregation of rules and to connectives of antecedents ; and 3) parameterized families of T - norms and S - norms to fuzzy implication operators, to aggregation of rules and to connectives of antecedents. Our approach introduces more flexibility to the structure and design of neuro - fuzzy systems. Through computer simulations, we show that Mamdani - type systems are more suitable to approximation problems, whereas logical - type systems may be preferred for classification problems.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)