Anda belum login :: 27 Nov 2024 09:58 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Flexible Neuro-Fuzzy Systems
Oleh:
Rutkowski, L.
;
Cpalka, K.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 3 (May 2003)
,
page 554-574.
Topik:
Neuro fuzzy
;
flexible
;
neuro - fuzzy
;
systems
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.7
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, we derive new neuro - fuzzy structures called flexible neuro - fuzzy inference systems or FLEXNFIS. Based on the input-output data, we learn not only the parameters of the membership functions but also the type of the systems (Mamdani or logical). Moreover, we introduce : 1) softness to fuzzy implication operators, to aggregation of rules and to connectives of antecedents ; 2) certainty weights to aggregation of rules and to connectives of antecedents ; and 3) parameterized families of T - norms and S - norms to fuzzy implication operators, to aggregation of rules and to connectives of antecedents. Our approach introduces more flexibility to the structure and design of neuro - fuzzy systems. Through computer simulations, we show that Mamdani - type systems are more suitable to approximation problems, whereas logical - type systems may be preferred for classification problems.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)