Anda belum login :: 24 Nov 2024 02:31 WIB
Detail
ArtikelLinear Dependency Between & epsi; and The Input Noise in & epsi; -Support Vector Regression  
Oleh: Kwokand, J. T. ; Tsang, I. W.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 14 no. 3 (May 2003), page 544-553.
Topik: REGRESSION; linear dependency; noise; support vector; regression hybrid; knowledge - based networks
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.7
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelIn using the & epsi ; - support vector regression (& epsi ; -SVR) algorithm, one has to decide a suitable value for the insensitivity parameter & epsi ;. Smola et al. considered its "optimal" choice by studying the statistical efficiency in a location parameter estimation problem. While they successfully predicted a linear scaling between the optimal & epsi ; and the noise in the data, their theoretically optimal value does not have a close match with its experimentally observed counterpart in the case of Gaussian noise. In this paper, we attempt to better explain their experimental results by studying the regression problem itself. Our resultant predicted choice of & epsi ; is much closer to the experimentally observed optimal value, while again demonstrating a linear trend with the input noise.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)