Anda belum login :: 23 Nov 2024 07:55 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Neural Networks for Blind-Source Separation of Stromboli Explosion Quakes
Oleh:
Acernese, Fausto
;
Martino, S. De
;
Ciaramella, A.
;
Rosa, R. De
;
Falanga, M.
;
Tagliaferri, R.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 1 (Jan. 2003)
,
page 167-175.
Topik:
Relief explosion
;
seismic data analysis
;
ICA
;
non linear systems
;
independent component analysis
;
blind - source separation
;
data analysis
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.8
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Independent component analysis (ICA) is used to analyze the seismic signals produced by explosions of the Stromboli volcano. It has been experimentally proved that it is possible to extract the most significant components from seismometer recorders. In particular, the signal, eventually thought as generated by the source, is corresponding to the higher power spectrum, isolated by our analysis. Furthermore, the amplitude of the source signals has been found by using a simple trick and so overcoming, for this specific case, the classical problem of ICA regarding the amplitude loss of the separated signals.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)