Anda belum login :: 17 Feb 2025 08:46 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
An Adaptable Neural-Network Model for Recursive Nonlinear Traffic Prediction and Modeling of MPEG Video Sources
Oleh:
Kollias, S. D.
;
Doulamis, N. D.
;
Doulamis, A. D.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 1 (Jan. 2003)
,
page 150-166.
Topik:
mpeg
;
neural - network
;
recursive
;
non linear traffic
;
prediction
;
MPEG
;
video sources
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.8
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Multimedia services and especially digital video is expected to be the major traffic component transmitted over communication networks [such as internet protocol (IP) - based networks]. For this reason, traffic characterization and modeling of such services are required for an efficient network operation. The generated models can be used as traffic rate predictors, during the network operation phase (online traffic modeling), or as video generators for estimating the network resources, during the network design phase (offline traffic modeling). In this paper, an adaptable neural - network architecture is proposed covering both cases. The scheme is based on an efficient recursive weight estimation algorithm, which adapts the network response to current conditions. In particular, the algorithm updates the network weights so that : 1) the network output, after the adaptation, is approximately equal to current bit rates (current traffic statistics) and 2) a minimal degradation over the obtained network knowledge is provided. It can be shown that the proposed adaptable neural - network architecture simulates a recursive nonlinear autoregressive model (RNAR) similar to the notation used in the linear case. The algorithm presents low computational complexity and high efficiency in tracking traffic rates in contrast to conventional retraining schemes. Furthermore, for the problem of offline traffic modeling, a novel correlation mechanism is proposed for capturing the burstness of the actual MPEG video traffic. The performance of the model is evaluated using several real - life MPEG coded video sources of long duration and compared with other linear / non linear techniques used for both cases. The results indicate that the proposed adaptable neural - network architecture presents better performance than other examined techniques.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)