Anda belum login :: 27 Nov 2024 01:01 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Absolute Exponential Stability of A Class of Continuous-Time Recurrent Neural Networks
Oleh:
Hu, Sanqing
;
Jun, Wang
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 1 (Jan. 2003)
,
page 35-45.
Topik:
time
;
absolute
;
exponential stability
;
continuous - time
;
neural networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.8
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper presents a new result on absolute exponential stability (AEST) of a class of continuous - time recurrent neural networks with locally Lipschitz continuous and monotone nondecreasing activation functions. The additively diagonally stable connection weight matrices are proven to be able to guarantee AEST of the neural networks. The AEST result extends and improves the existing absolute stability and AEST ones in the literature.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)