Anda belum login :: 17 Feb 2025 14:01 WIB
Detail
ArtikelMultiobjective Evolutionary Optimization of The Size, Shape, and Position Parameters of Radial Basis Function Networks for Function Approximation  
Oleh: Gonzalez, J. ; Rojas, I. ; Ortega, J. ; Pomares, H. ; Fernandez, F. J. ; Diaz, A. F.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 14 no. 6 (Nov. 2003), page 1478-1495.
Topik: moment approximation; multiobjective; optimization; parameters; radial basis function networks; approximation
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.9
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThis paper presents a multiobjective evolutionary algorithm to optimize radial basis function neural networks (RBFNN s) in order to approach target functions from a set of input - output pairs. The procedure allows the application of heuristics to improve the solution of the problem at hand by including some new genetic operators in the evolutionary process. These new operators are based on two well - known matrix transformations : singular value decomposition (SVD) and orthogonal least squares (OLS), which have been used to define new mutation operators that produce local or global modifications in the radial basis functions (RBFs) of the networks (the individuals in the population in the evolutionary procedure). After analyzing the efficiency of the different operators, we have shown that the global mutation operators yield an improved procedure to adjust the parameters of the RBFNN s.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)