Anda belum login :: 23 Nov 2024 00:00 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Monte Carlo Analysis of Missing Data Techniques in A HRM Setting
Oleh:
Roth, Philip L.
;
Switzer, Fred S.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
JOM: Journal of Management vol. 21 no. 5 (1995)
,
page 1003-1023.
Topik:
monte carlo analysis
;
HRM
;
human resource management
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
JJ92.5
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Researchers have examined various techniques to solve the problem of missing data. Simple techniques have included list wise deletion, pairwise deletion, mean substitution, regression imputation and hot - deck imputation. Past research suggests that regression imputation and pairwise deletion generally result in less dispersion around true score values while listwise deletion results in more dispersion around true scores. Unfortunately, this research spent much less time examining whether the various techniques lead to overestimation or underestimation of the true values of various statistics. The present study utilized a Monte Carlo Analysis to simulate an HRM research setting to evaluate missing data techniques. Pairwise deletion resulted in the least dispersion around true scores and least average error of any missing data technique for calculating correlations. Implications for use of these techniques and future missing data research were explored.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)