Anda belum login :: 23 Nov 2024 06:07 WIB
Detail
ArtikelDiscrete-time hazard regression models with hidden heterogeneity:the semiparametric mixed poisson regression approach  
Oleh: Nagin, Daniel S. ; Land, Kenneth C. ; McCall, Patricia L.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: Sociological Methods & Research (SMR) vol. 29 no. 03 (Feb. 2001), page 342-374.
Topik: nonparametric; Regression models; regression approach
Fulltext: Nagin, Daniel S.; Land, Kenneth C.; McCall, Patricia L..pdf (2.87MB)
Ketersediaan
  • Perpustakaan PKPM
    • Nomor Panggil: S28
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelPrevious methodological research has shown that hidden heterogeneity in hazard rate regression models-in the form of systematic differences between sample members in the risk or hazard of making a transition due to unobserved variables not accounted for by the measured covariates-can produce biased parameter estimates and erroneous inferences. However. few empirical applications of hazard regression do more than pay lip service to the complications of hidden heterogeneity. In part, this is due to the relative inaccessibility of the mathematical apparatus of continuous-time hazard regression methodology with flexible nonparametric specifications on the hidden heterogeneity. This article presents new methods for incorporating nonparametric specifications of hidden heterogeneity into hazard regressions by developing discrete-time Poisson rate/complementary log-log hazard regression models with nonparametric hidden heterogeneity that are analogous to the continuous-time models of Heckman and Singer. Maximum-likelihood estimators and associated hypothesis tests are described. An empirical application to data on criminal careers, which illustrates the utility of models that explicitly incorporate hidden heterogeneity, is presented.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.03125 second(s)