Anda belum login :: 23 Nov 2024 03:11 WIB
Detail
ArtikelEmpirical Tests of the Gradual Learning Algorithm  
Oleh: Hayes, Bruce ; Boersma, Paul
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: Linguistic Inquiry (ada di JSTOR) vol. 32 no. 1 (2001), page 45-86.
Fulltext: Vol 32 No 1 pp 45-86.pdf (4.66MB)
Ketersediaan
  • Perpustakaan PKBB
    • Nomor Panggil: 405/LII/32
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThe Gradual Learning Algorithm (Boersma 1997) is a constraint-ranking algorithm for learning optimality-theoretic grammars. The purpose of this article is to assess the capabilities of the Gradual Learning Algorithm, particularly in comparison with the Constraint Demotion algorithm of Tesar and Smolensky (1993, 1996, 1998, 2000), which initiated the learnability research program for Optimality Theory. We argue that the Gradual Learning Algorithm has a number of special advantages: it can learn free variation, deal effectively with noisy learning data, and account for gradient well-formedness judgments. The case studies we examine involve Ilokano reduplication and metathesis, Finnish genitive plurals, and the distribution of English light and dark Ill. Keywords: learnability, Optimality Theory, variation, Ilokano, Finnish
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)