Anda belum login :: 04 Dec 2024 00:54 WIB
Detail
ArtikelUncertainty of Data, Fuzzy Membership Functions, and Multilayer Perceptrons  
Oleh: Duch, W.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 16 no. 1 (Jan. 2005), page 10-23.
Topik: Data; data; fuzzy membership functions; multilayer perceptrons
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.12
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelProbability that a crisp logical rule applied to imprecise input data is true may be computed using fuzzy membership function (MF). All reasonable assumptions about input uncertainty distributions lead to MF s of sigmoidal shape. Convolution of several inputs with uniform uncertainty leads to bell - shaped Gaussian - like uncertainty functions. Relations between input uncertainties and fuzzy rules are systematically explored and several new types of MF s discovered. Multilayered perceptron (MLP) networks are shown to be a particular implementation of hierarchical sets of fuzzy threshold logic rules based on sigmoidal MF s. They are equivalent to crisp logical networks applied to input data with uncertainty. Leaving fuzziness on the input side makes the networks or the rule systems easier to understand. Practical applications of these ideas are presented for analysis of questionnaire data and gene expression data.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)