Anda belum login :: 04 Dec 2024 00:54 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Uncertainty of Data, Fuzzy Membership Functions, and Multilayer Perceptrons
Oleh:
Duch, W.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 16 no. 1 (Jan. 2005)
,
page 10-23.
Topik:
Data
;
data
;
fuzzy membership functions
;
multilayer perceptrons
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.12
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Probability that a crisp logical rule applied to imprecise input data is true may be computed using fuzzy membership function (MF). All reasonable assumptions about input uncertainty distributions lead to MF s of sigmoidal shape. Convolution of several inputs with uniform uncertainty leads to bell - shaped Gaussian - like uncertainty functions. Relations between input uncertainties and fuzzy rules are systematically explored and several new types of MF s discovered. Multilayered perceptron (MLP) networks are shown to be a particular implementation of hierarchical sets of fuzzy threshold logic rules based on sigmoidal MF s. They are equivalent to crisp logical networks applied to input data with uncertainty. Leaving fuzziness on the input side makes the networks or the rule systems easier to understand. Practical applications of these ideas are presented for analysis of questionnaire data and gene expression data.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)