Anda belum login :: 23 Nov 2024 15:36 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Low-Molecular-Weight Peptides from Salmon Protein Prevent Obesity-Linked Glucose Intolerance, Inflammation, and Dyslipidemia in LDLR-/-/ApoB100/100 Mice
Oleh:
Chevrier, Genevieve
;
Mitchell, Patricia L.
;
Rioux, Laurie-Eve
;
Hasan, Fida
;
Tianyi, Jin
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
JN: The Journal of Nutrition vol. 145 no. 07 (Jul. 2015)
,
page 1415-1422 .
Topik:
low-molecular-weight peptide omega-3 fatty acids glucose metabolism insulin signaling anti-inflammatory metabolic syndrome protein hydrolysate amino acids
Ketersediaan
Perpustakaan FK
Nomor Panggil:
J42.K
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Background: We previously reported that fish proteins can alleviate metabolic syndrome (MetS) in obese animals and human subjects. Objectives: We tested whether a salmon peptide fraction (SPF) could improve MetS in mice and explored potential mechanisms of action. Methods: ApoB100 only, LDL receptor knockout male mice (LDLR-/-/ApoB100/100) were fed a high-fat and -sucrose (HFS) diet (25 g/kg sucrose). Two groups were fed 10 g/kg casein hydrolysate (HFS), and 1 group was additionally fed 4.35 g/kg fish oil (FO; HFS+FO). Two other groups were fed 10 g SPF/kg (HFS+SPF), and 1 group was additionally fed 4.35 g FO/kg (HFS+SPF+FO). A fifth (reference) group was fed a standard feed pellet diet. We assessed the impact of dietary treatments on glucose tolerance, adipose tissue inflammation, lipid homeostasis, and hepatic insulin signaling. The effects of SPF on glucose uptake, hepatic glucose production, and inducible nitric oxide synthase activity were further studied in vitro with the use of L6 myocytes, FAO hepatocytes, and J774 macrophages. Results: Mice fed HFS+SPF or HFS+SPF+FO diets had lower body weight (protein effect, P = 0.024), feed efficiency (protein effect, P = 0.018), and liver weight (protein effect, P = 0.003) as well as lower concentrations of adipose tissue cytokines and chemokines (protein effect, P = 0.003) compared with HFS and HFS+FO groups. They also had greater glucose tolerance (protein effect, P < 0.001), lower activation of the mammalian target of rapamycin complex 1/S6 kinase 1/insulin receptor substrate 1 (mTORC1/S6K1/IRS1) pathway, and increased insulin signaling in liver compared with the HFS and HFS+FO groups. The HFS+FO, HFS+SPF, and HFS+SPF+FO groups had lower plasma triglycerides (protein effect, P = 0.003; lipid effect, P = 0.002) than did the HFS group. SPF increased glucose uptake and decreased HGP and iNOS activation in vitro. Conclusions: SPF reduces obesity-linked MetS features in LDLR-/-/ApoB100/100 mice. The anti-inflammatory and glucoregulatory properties of SPF were confirmed in L6 myocytes, FAO hepatocytes, and J774 macrophages.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)