Anda belum login :: 23 Nov 2024 10:23 WIB
Detail
ArtikelBarcode tagging of human oocytes and embryos to prevent mix-ups in assisted reproduction technologies  
Oleh: Novo, Sergi ; Nogues, Carme ; Penon, Oriol ; Barrios, Leonardo ; Santalo, Josep
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: Human Reproduction vol. 29 no. 01 (Jan. 2014), page 18-28.
Topik: polysilicon barcodes; traceability; embryo; identification
Ketersediaan
  • Perpustakaan FK
    • Nomor Panggil: H07.K.2014.01
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelSTUDY QUESTION Is the attachment of biofunctionalized polysilicon barcodes to the outer surface of the zona pellucida an effective approach for the direct tagging and identification of human oocytes and embryos during assisted reproduction technologies (ARTs)? SUMMARY ANSWER The direct tagging system based on lectin-biofunctionalized polysilicon barcodes of micrometric dimensions is simple, safe and highly efficient, allowing the identification of human oocytes and embryos during the various procedures typically conducted during an assisted reproduction cycle. WHAT IS KNOWN ALREADY Measures to prevent mismatching errors (mix-ups) of the reproductive samples are currently in place in fertility clinics, but none of them are totally effective and several mix-up cases have been reported worldwide. Using a mouse model, our group has previously developed an effective direct embryo tagging system which does not interfere with the in vitro and in vivo development of the tagged embryos. This system has now been tested in human oocytes and embryos. STUDY DESIGN, SIZE, DURATION Fresh immature and mature fertilization-failed oocytes (n = 21) and cryopreserved day 1 embryos produced by in vitro fertilization (IVF) or intracytoplasmic sperm injection (ICSI) (n = 205) were donated by patients (n = 76) undergoing ARTs. In vitro development rates, embryo quality and post-vitrification survival were compared between tagged (n = 106) and non-tagged (control) embryos (n = 99). Barcode retention and identification rates were also calculated, both for embryos and for oocytes subjected to a simulated ICSI and parthenogenetic activation. Experiments were conducted from January 2012 to January 2013. PARTICIPANTS/MATERIALS, SETTING, METHODS Barcodes were fabricated in polysilicon and biofunctionalizated with wheat germ agglutinin lectin. Embryos were tagged with 10 barcodes and cultured in vitro until the blastocyst stage, when they were either differentially stained with propidium iodide and Hoechst or vitrified using the Cryotop method. Embryo quality was also analyzed by embryo grading and time-lapse monitoring. Injected oocytes were parthenogenetically activated using ionomycin and 6-dimethylaminopurine. MAIN RESULTS AND THE ROLE OF CHANCE Blastocyst development rates of tagged (27/58) and non-tagged embryos (24/51) were equivalent, and no significant differences in the timing of key morphokinetic parameters and the number of inner cell mass cells were detected between the two groups (tagged: 24.7 ± 2.5; non-tagged: 22.3 ± 1.9), indicating that preimplantation embryo potential and quality are not affected by the barcodes. Similarly, re-expansion rates of vitrified-warmed tagged (19/21) and non-tagged (16/19) blastocysts were similar. Global identification rates of 96.9 and 89.5% were obtained in fresh (mean barcode retention: 9.22 ± 0.13) and vitrified-warmed (mean barcode retention: 7.79 ± 0.35) tagged embryos, respectively, when simulating an automatic barcode reading process, though these rates were increased to 100% just by rotating the embryos during barcode reading. Only one of the oocytes lost one barcode during intracytoplasmic injection (100% identification rate) and all oocytes retained all the barcodes after parthenogenetic activation. LIMITATIONS, REASONS FOR CAUTION Although the direct embryo tagging system developed is effective, it only allows the identification and traceability of oocytes destined for ICSI and embryos. Thus, the traceability of all reproductive samples (oocytes destined for IVF and sperm) is not yet ensured. WIDER IMPLICATIONS OF THE FINDINGS The direct embryo tagging system developed here provides fertility clinics with a novel tool to reduce the risk of mix-ups in human ARTs. The system can also be useful in research studies that require the individual identification of oocytes or embryos and their individual tracking.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)