Anda belum login :: 23 Nov 2024 09:41 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Hidden Space Support Vector Machines
Oleh:
Zhang, Li
;
Zhou, Weida
;
Jiao, Licheng
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 15 no. 6 (Nov. 2004)
,
page 1424-1434.
Topik:
support
;
hidden space
;
support vector
;
machines
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.11
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Hidden space support vector machines (HSSVM s) are presented in this paper. The input patterns are mapped into a high - dimensional hidden space by a set of hidden nonlinear functions and then the structural risk is introduced into the hidden space to construct HSSVM s. Moreover, the conditions for the nonlinear kernel function in HSSVM s are more relaxed, and even differentiability is not required. Compared with support vector machines (SVM s), HSSVM s can adopt more kinds of kernel functions because the positive definite property of the kernel function is not a necessary condition. The performance of HSSVM s for pattern recognition and regression estimation is also analyzed. Experiments on artificial and real - world domains confirm the feasibility and the validity of our algorithms.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)