Anda belum login :: 23 Nov 2024 09:41 WIB
Detail
ArtikelHidden Space Support Vector Machines  
Oleh: Zhang, Li ; Zhou, Weida ; Jiao, Licheng
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 15 no. 6 (Nov. 2004), page 1424-1434.
Topik: support; hidden space; support vector; machines
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.11
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelHidden space support vector machines (HSSVM s) are presented in this paper. The input patterns are mapped into a high - dimensional hidden space by a set of hidden nonlinear functions and then the structural risk is introduced into the hidden space to construct HSSVM s. Moreover, the conditions for the nonlinear kernel function in HSSVM s are more relaxed, and even differentiability is not required. Compared with support vector machines (SVM s), HSSVM s can adopt more kinds of kernel functions because the positive definite property of the kernel function is not a necessary condition. The performance of HSSVM s for pattern recognition and regression estimation is also analyzed. Experiments on artificial and real - world domains confirm the feasibility and the validity of our algorithms.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)