Anda belum login :: 27 Nov 2024 06:06 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
The Bias and Efficiency of Incomplete-Data Estimators in Small Univariate Normal Samples
Oleh:
Hippel, Paul T. von
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
Sociological Methods & Research (SMR) vol. 42 no. 04 (Nov. 2013)
,
page 531-558.
Topik:
Missing Data
;
Missing Values
;
Incomplete Data
;
Multiple Imputation
;
Imputation
;
M Estimation
;
Bayesian Estimation
;
ML Imputation
;
PD Imputation
;
Maximum Likelihood
;
Full Information Maximum Likelihood
Fulltext:
S28 v42 n4 2013 p531,win.pdf
(433.29KB)
Ketersediaan
Perpustakaan PKPM
Nomor Panggil:
S28
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Widely used methods for analyzing missing data can be biased in small samples. To understand these biases, we evaluate in detail the situation where a small univariate normal sample, with values missing at random, is analyzed using either observed-data maximum likelihood (ML) or multiple imputation (MI). We evaluate two types of MI: the usual Bayesian approach, which we call posterior draw (PD) imputation, and a little used alternative, which we call ML imputation, in which values are imputed conditionally on an ML estimate. We find that observed-data ML is more efficient and has lower mean squared error than either type of MI. Between the two types of MI, ML imputation is more efficient than PD imputation, and ML imputation also has less potential for bias in small samples. The bias and efficiency of PD imputation can be improved by a change of prior.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)