Anda belum login :: 27 Nov 2024 17:01 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Fast Converging Minimum Probability of Error Neural Network Receivers for DS-CDMA Communications
Oleh:
Batalama, S. N.
;
Matyjas, J. D.
;
Psaromiligkos, I. N.
;
Medley, M. J.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 15 no. 2 (Mar. 2004)
,
page 445-454.
Topik:
cdma
;
fast - converging
;
probability
;
error neural network
;
DS - CDMA communications
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.10
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
We consider a multilayer perceptron neural network (NN) receiver architecture for the recovery of the information bits of a direct - sequence code - division - multiple - access (DS - CDMA) user. We develop a fast converging adaptive training algorithm that minimizes the bit - error rate (BER) at the output of the receiver. The adaptive algorithm has three key features : i) it incorporates the BER, i. e., the ultimate performance evaluation measure, directly into the learning process, ii) it utilizes constraints that are derived from the properties of the optimum single - user decision boundary for additive white Gaussian noise (AWGN) multiple - access channels, and iii) it embeds importance sampling (IS) principles directly into the receiver optimization process. Simulation studies illustrate the BER performance of the proposed scheme.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)