Anda belum login :: 23 Nov 2024 23:00 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Multistability of Discrete-Time Recurrent Neural Networks With Unsaturating Piecewise Linear Activation Functions
Oleh:
Kok, Kiong Tan
;
Yi, Zhang
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 15 no. 2 (Mar. 2004)
,
page 329-336.
Topik:
NEURAL NETWORKS
;
multistability
;
discrete - time
;
neural networks
;
piecewise linear activation
;
functions
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.10
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper studies the multistability of a class of discrete - time recurrent neural networks with unsaturating piecewise linear activation functions. It addresses the nondivergence, global attractivity, and complete stability of the networks. Using the local inhibition, conditions for nondivergence are derived, which not only guarantee nondivergence, but also allow for the existence of multi equilibrium points. Under these nondivergence conditions, global attractive compact sets are obtained. Complete stability is studied via constructing novel energy functions and using the well - known Cauchy Convergence Principle. Examples and simulation results are used to illustrate the theory.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)