Anda belum login :: 27 Nov 2024 13:24 WIB
Detail
ArtikelLocal Estimation of Posterior Class Probabilities to Minimize Classification Errors  
Oleh: Guerrero-Curieses, A. ; Cid-Sueiro, J. ; Alaiz-Rodriguez, R. ; Figueiras-Vidal, A. R.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 15 no. 2 (Mar. 2004), page 309-317.
Topik: CLASSIFICATION; local estimation; posterior class; probabilities; minimize classification errors
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.10
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelDecision theory shows that the optimal decision is a function of the posterior class probabilities. More specifically, in binary classification, the optimal decision is based on the comparison of the posterior probabilities with some threshold. Therefore, the most accurate estimates of the posterior probabilities are required near these decision thresholds. This paper discusses the design of objective functions that provide more accurate estimates of the probability values, taking into account the characteristics of each decision problem. We propose learning algorithms based on the stochastic gradient minimization of these loss functions. We show that the performance of the classifier is improved when these algorithms behave like sample selectors : samples near the decision boundary are the most relevant during learning.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)