Anda belum login :: 27 Nov 2024 08:13 WIB
Detail
ArtikelDynamic Probability Estimator for Machine Learning  
Oleh: Wang, Feng ; Starzyk, J. A.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 15 no. 2 (Mar. 2004), page 298-308.
Topik: MACHINE LEARNING; dynamic probability; estimator; machine learning
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.10
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelAn efficient algorithm for dynamic estimation of probabilities without division on unlimited number of input data is presented. The method estimates probabilities of the sampled data from the raw sample count, while keeping the total count value constant. Accuracy of the estimate depends on the counter size, rather than on the total number of data points. Estimator follows variations of the incoming data probability within a fixed window size, without explicit implementation of the windowing technique. Total design area is very small and all probabilities are estimated concurrently. Dynamic probability estimator was implemented using a programmable gate array from Xilinx. The performance of this implementation is evaluated in terms of the area efficiency and execution time. This method is suitable for the highly integrated design of artificial neural networks where a large number of dynamic probability estimators can work concurrently.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)