Anda belum login :: 17 Feb 2025 08:32 WIB
Detail
ArtikelCombined Deficiency of Iron and (n-3) Fatty Acids in Male Rats Disrupts Brain Monoamine Metabolism and Produces Greater Memory Deficits Than Iron Deficiency or (n-3) Fatty Acid Deficiency Alone  
Oleh: Baumgartner, Jeannine ; Smuts, Cornelius M. ; Malan, Linda ; Arnold, Myrtha
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: JN: The Journal of Nutrition vol. 142 no. 08 (Jul. 2012), page 1463-1471.
Topik: NUTRIENT; Nutrient Physiology; Metabolism; Nutrient-Nutrient Interactions
Ketersediaan
  • Perpustakaan FK
    • Nomor Panggil: J42.K.2012.02
    • Non-tandon: 1 (dapat dipinjam: 1)
    • Tandon: tidak ada
   Reserve Lihat Detail Induk
Isi artikelDeficiencies of iron (Fe) (ID) and (n-3) fatty acids (FA) [(n-3)FAD] may impair brain development and function through shared mechanisms. However, little is known about the potential interactions between these 2 common deficiencies. We studied the effects of ID and (n-3)FAD, alone and in combination, on brain monoamine pathways (by measuring monoamines and related gene expression) and spatial working and reference memory (by Morris water maze testing). Using a 2 × 2 design, male rats were fed an ID, (n-3)FAD, ID+(n-3)FAD, or control diet for 5 wk postweaning (postnatal d 21–56) after (n-3)FAD had been induced over 2 generations. The (n-3)FAD and ID diets decreased brain (n-3) FA by 70–76% and Fe by 20–32%, respectively. ID and (n-3)FAD significantly increased dopamine (DA) concentrations in the olfactory bulb (OB) and striatum, with an additive 1- to 2-fold increase in ID+(n-3)FAD rats compared with controls (P < 0.05). ID decreased serotonin (5-HT) levels in OB, with a significant decrease in ID+(n-3)FAD rats. Furthermore, norepinephrine concentrations were increased 2-fold in the frontal cortex (FC) of (n-3)FAD rats (P < 0.05). Dopa decarboxylase was downregulated in the hippocampus of ID and ID+(n-3)FAD rats (fold-change = -1.33; P < 0.05). ID and (n-3)FAD significantly impaired working memory performance and the impairment positively correlated with DA concentrations in FC (r = 0.39; P = 0.026). Reference memory was impaired in the ID+(n-3)FAD rats (P < 0.05) and was negatively associated with 5-HT in FC (r = -0.42; P = 0.018). These results suggest that the combined deficiencies of Fe and (n-3) FA disrupt brain monoamine metabolism and produce greater deficits in reference memory than ID or (n-3)FAD alone.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)