Anda belum login :: 23 Nov 2024 16:12 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Initial Development of Image Processing Based Computer Vision Technology on Robotic Arm Manipulator for Tool Wear Monitoring on Micro-milling (paper of 2021 7th International Conference on Mechatronics and Robotics Engineering (ICMRE) 3-5 Feb. 2021)
Bibliografi
Author:
Kiswanto, Gandjar
;
Putra, Ramandika Garindra
;
Christiand
;
Fitriawan, Muhammad Ramadhani
;
Hiltansyah, Fachryal
;
Putri, Shabrina Kartika
Topik:
tool wear
;
image processing
;
openCV
;
micro-milling
;
gaussian blur
Bahasa:
(EN )
Penerbit:
IEEE
Tahun Terbit:
2021
Jenis:
Papers/Makalah - pada seminar internasional
Fulltext:
kiswanto2021 2.pdf
(4.73MB;
0 download
)
[
Informasi yang berkaitan dengan koleksi ini di internet
]
Abstract
Tool wear monitoring needs high accuracy that can be done with electron microscope which needs long period of time. Instead, this research is to simplified the tool wear monitoring with image processing-based computer vision using Dino-Lite attached to robotic arm manipulator. The development uses OpenCV on Python with the following steps: (1) gathering the new and the broken tool images using Dino-Lite; (2) importing the image to Python and convert to HSV; (3) giving a noise reduction using Gaussian Blur; (4) giving a color detection to obtain masking of the HSV thresholding variable adjustment; (5) uses image Canny to detect contour area from the thresholding; (6) the new and the broken tool face area will be displayed; (7) these two values will be compared and generate the wear percentage. The image processing calculates the tool face area and the experiment uses the variation of Gaussian Blur for noise reduction, with the given values of 0, 1, 3, 5, 7, 9 11, 13, 15, 17. Few data cannot be obtained due to the unsupported image condition. The results show that the tool area on the images is more potential to be detected due to the increasing number of Gaussian Blur value.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Lihat Sejarah Pengadaan
Konversi Metadata
Kembali
Process time: 0.15625 second(s)