Anda belum login :: 27 Nov 2024 07:06 WIB
Detail
ArtikelEpigallocatechin-3-Gallate Inhibits Expression of Receptors for T Cell Regulatory Cytokines and Their Downstream Signaling in Mouse CD4+ T Cells  
Oleh: Wang, Junpeng ; Pae, Munkyong ; Meydani, Simin Nikbin ; Wu, Dayong
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: JN: The Journal of Nutrition vol. 142 no. 03 (Mar. 2012), page 566-571.
Topik: Nutritional Immunology
Ketersediaan
  • Perpustakaan FK
    • Nomor Panggil: J42.K.2012.01
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelWe previously showed a suppressive effect of epigallocatechin-3-gallate (EGCG) on T cell cycling and expansion as well as a paradoxical effect on IL-2 levels (upregulating) and IL-2 receptor (IL-2R)a expression (downregulating). Thus, in the current study, we tested the hypothesis that EGCG affects T cell responses via impairing the IL-2/IL-2R signaling. We found that EGCG inhibited anti-CD3/CD28-induced proliferation of naïve CD4+ T cells from C57BL/6 mice. EGCG increased accumulation of IL-2 but inhibited expression of IL-2R, including all its subunits [IL-2Ra, IL-2/IL-15Rß, and common ? chain (?c)]. Using phosphorylation of STAT5 as a marker, we further found that EGCG suppressed IL-2R downstream signaling. Because IL-2R subunits IL-2/IL-15Rß- and ?c are shared with IL-15R and ?c is shared with IL-7R, we suspected that EGCG might also influence the signaling of IL-15 and IL-7, the two key regulators in maintaining T cell homeostasis. Results showed that EGCG suppressed IL-15 and IL-7 signaling; further, EGCG not only inhibited the subunits in IL-15R and IL-7R shared with IL-2R, but also affected their proprietary a chains in a manner that aligns with an impaired signaling. Although IL-2, IL-15, and IL-7 have separate and distinctive roles in regulating T cells, all of them are critical for T cell survival, expansion, and differentiation. Thus, these findings indicate an involvement of T cell growth cytokines in EGCG-induced T cell suppression through downregulated expression of their receptors and downstream signaling. This implies a potential application in controlling dysregulated T cell functions such as those observed in autoimmune and inflammatory disorders.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)