Anda belum login :: 27 Nov 2024 07:14 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Fractional-Diffusion Solutions for Transient Local Temperature and Heat Flux
Oleh:
Kulish, V. V.
;
Lage, J. L.
Jenis:
Article from Bulletin/Magazine
Dalam koleksi:
Journal of Heat Transfer vol. 122 no. 2 (May 2000)
,
page 372-375.
Topik:
diffusion
;
fractional - diffusion
;
transient
;
local temperature
;
heat flux
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
JJ90.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Applying properties of the Laplace transform, the transient heat diffusion equation can be transformed into a fractional (extraordinary) differential equation. This equation can then be modified, using the Fourier Law, into a unique expression relating the local value of the time - varying temperature (or heat flux) and the corresponding transient heat flux (or temperature). We demonstrate that the transformation into a fractional equation requires the assumption of unidirectional heat transport through a semi - infinite domain. Even considering this limitation, the transformed equation leads to a very simple relation between local time - varying temperature and heat flux. When applied along the boundary of the domain, the analytical expression determines the local time - variation of surface temperature (or heat flux) without having to solve the diffusion equation within the entire domain. The simplicity of the solution procedure, together with some introductory concepts of fractional derivatives, is highlighted considering some transient heat transfer problems with known analytical solutions.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)