Anda belum login :: 27 Nov 2024 06:54 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Bayesian Posterior Estimation of Logit Parameters With Small Samples
Oleh:
Galindo-Garre, Francisca
;
Vermunt, Jeroen K.
;
Bergsma, Wicher
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
Sociological Methods & Research (SMR) vol. 33 no. 01 (Aug. 2004)
,
page 88-117.
Topik:
Small Samples
;
Logit Models
;
Bayesian Estimation
;
Prior Distributions
Ketersediaan
Perpustakaan PKPM
Nomor Panggil:
S28
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
When the sample size is small compared to the number of cells in a contingency table, maximum likelihood estimates of logit parameters and their associated standard errors may not exist or may be biased. This problem is usually solved by “smoothing” the estimates, assuming a certain prior distribution for the parameters. This article investigates the performance of point and interval estimates obtained by assuming various prior distributions. The authors focus on two logit parameters of a 2 × 2 × 2 table: the interaction effect of two predictors on a response variable and the main effect of one of two predictors on a response variable, under the assumption that the interaction effect is zero. The results indicate the superiority of the posterior mode to the posterior mean.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)