The study of HCV biology is complicated by the paucity of relevant animal models. The ideal model for studying HCV would be one that adequately represents most aspects of human HCV infection and disease, is affordable, easily available, and reproducible. Currently, the only widely recognized animal model of HCV infection is the chimpanzee, which does not meet all of these desirable attributes. Recently, other models have been used to dissect various aspects of HCV biology and to evaluate novel therapeutics. Each has a unique set of advantages and limitations. Transgenic mouse models have elucidated the pathophysiology of specific viral proteins, but they are limited by their inability to support HCV replication. Xenograft models provide an environment for human hepatocyte engraftment in mice and subsequent infection with HCV. These models are technically challenging, but once optimized they promise to be extremely useful both for the study of HCV biology and for drug development. Alternatively, the GBV-B virus, which efficiently replicates in tamarins and marmosets, represents a surrogate model for the study of HCV. Chimeras between GBV-B and HCV have been created and will be useful in the development of HCV-targeting drugs.
[hepatitis - buku HCV:chapter 12] |