Anda belum login :: 26 Nov 2024 10:04 WIB
Detail
ArtikelA Numerical Model Coupling The Heat and Gas Species’ Transport Processes in A Tubular SOFC  
Oleh: Schaefer, Laura ; Li, Pei-Wen ; Chyu, Minking K.
Jenis: Article from Bulletin/Magazine
Dalam koleksi: Journal of Heat Transfer vol. 126 no. 2 (Apr. 2004), page 219-229.
Topik: Tubular Copper; numerical model; coupling; heat; gas species; transport processes; tubular SOFC
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: JJ90.8
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelA numerical model is presented in this work that computes the interdependent fields of flow, temperature, and mass fractions in a single tubular solid oxide fuel cell (SOFC). Fuel gas from a pre-reformer is considered to contain H(2), CO, CO(2), H(2)O (vapor), and CH(4), so reforming and shift reactions in the cell are incorporated. The model uses mixture gas properties of the fuel and oxidant that are functions of the numerically obtained local temperature, pressure, and species concentrations, which are both interdependent and related to the chemical and electrochemical reactions. A discretized network circuit of a tubular SOFC was adopted to account for the Ohmic losses and Joule heating from the current passing around the circumference of the cell to the interconnect. In the iterative computation, local electrochemical parameters were simultaneously calculated based on the local parameters of pressure, temperature, and concentration of the species. Upon convergence of the computation, both local details and the overall performance of the fuel cell are obtained. These numerical results are important in order to better understand the operation of SOFC s.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)