Anda belum login :: 27 Nov 2024 04:42 WIB
Detail
ArtikelThermal and Thermomechanical Phenomena in Picosecond Laser Copper Interaction  
Oleh: Xinwei, Wang
Jenis: Article from Bulletin/Magazine
Dalam koleksi: Journal of Heat Transfer vol. 126 no. 3 (Jun. 2004), page 355-364.
Topik: LASERS; thermal; thermomechanical; phenomena; picosecond; laser copper; interaction
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: JJ90.8
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThermal and thermomechanical phenomena in laser metal interaction are of great importance in terms of understanding the underlying mechanisms in laser materials processing, optimizing the efficiency of laser micro - machining, and minimizing laser induced damage. In this work, Molecular Dynamics (MD) simulation is carried out to investigate picosecond laser copper interaction. A method has been developed to account for the laser beam absorption in, and the thermal transport sustained by, free electrons. Superheating is observed, and an evident temperature drop is revealed at the solid - liquid interface, which moves at a speed of 4400 m / s. However, the later phase change from solid to liquid happens in the target simultaneously and no visible movement of solid - liquid interface is observed. The results show that the laser induced stress wave consists of a strong compressive stress and a weak tensile stress. After reflection at the back side of the MD domain, the strong compressive stress becomes a strong tensile stress, which results in a visible drop of the number density of atoms. In the presence of this strong tensile stress, voids have formed in the region near the back side of the MD domain, indicating that the strong tensile stress in laser materials interaction plays an important role in terms of inducing structural damage.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)