Anda belum login :: 17 Feb 2025 11:08 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Monte Carlo Approach for Adaptive Testing With Content Constraints
Oleh:
Belov, Dmitry I.
;
Armstrong, Ronald D.
;
Weissman, Alexander
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
Applied Psychological Measurement vol. 32 no. 6 (Sep. 2008)
,
page 431-446.
Topik:
computerized adaptive testing
;
Monte Carlo methods
;
test assembly
;
shadow test assembly
;
item response theory
;
automated test assembly
Fulltext:
431.pdf
(273.0KB)
Isi artikel
This article presents a new algorithm for computerized adaptive testing (CAT) when content constraints are present. The algorithm is based on shadow CAT methodology to meet content constraints but applies Monte Carlo methods and provides the following advantages over shadow CAT: (a) lower maximum item exposure rates, (b) higher utilization of the item pool, and (c) more robust ability estimates. Computer simulations with Law School Admission Test items demonstrated that the new algorithm (a) produces similar ability estimates as shadow CAT but with half the maximum item exposure rate and 100% pool utilization and (b) produces more robust estimates when a high- (or low-) ability examinee performs poorly (or well) at the beginning of the test.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)