Anda belum login :: 23 Nov 2024 03:16 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
An Analysis of Relevance Vector Machine Regression
Bibliografi
Author:
Saarela, Matti
;
Elomaa, Tapio
;
Ruohonen, Keijo
Topik:
Relevance vector machine
;
regression
;
sparse Bayesian learning.
Bahasa:
(EN )
Penerbit:
Springer-Verlag Berlin Heidelberg
Tempat Terbit:
Heidelberg
Tahun Terbit:
2010
Jenis:
Article
Fulltext:
An Analysis of Relevance Vector Machine Regression.pdf
(343.14KB;
0 download
)
Abstract
The relevance vector machine (RVM) is a Bayesian framework for learning sparse regression models and classifiers. Despite of its popularity and practical success, no thorough analysis of its functionality exists. In this paper we consider the RVM in the case of regression models and present two kinds of analysis results: we derive a full characterization of the behavior of the RVM analytically when the columns of the regression matrix are orthogonal and give some results concerning scale and rotation invariance of the RVM. We also consider the practical implications of our results and present a scenario in which our
results can be used to detect potential weakness in the RVM framework.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Lihat Sejarah Pengadaan
Konversi Metadata
Kembali
Process time: 0.171875 second(s)