Anda belum login :: 27 Nov 2024 09:02 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Improving Adaptive Importance Sampling Simulation Of Markovian Queueing Models Using Non-Parametric Smoothing
Oleh:
Woudt, Edwin
;
Boer, Pieter-Tjerk de
;
Ommeren, Jan-Kees van
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
Simulation vol. 83 no. 12 (Dec. 2007)
,
page 811-820.
Topik:
rare-event simulation
;
importance sampling
;
queueing networks
Fulltext:
811.pdf
(549.02KB)
Isi artikel
Previous work on state-dependent adaptive importance sampling techniques for the simulation of rare events in Markovian queueing models used either no smoothing or a parametric smoothing technique, which was known to be non-optimal. In this paper, we introduce the use of kernel smoothing in this context. We derive expressions for the smoothed transition probabilities, compare several variations of the technique, and explore the choice of kernel width. We provide some examples, demonstrating that the technique significantly improves convergence and estimator variance.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)