Anda belum login :: 27 Nov 2024 09:07 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
An Architecture for Behavior-Based Reinforcement Learning
Oleh:
Konidaris, G. D.
;
Hayes, G. M.
Jenis:
Article from Journal - e-Journal
Dalam koleksi:
Adaptive Behavior vol. 13 no. 1 (Mar. 2005)
,
page 5–32.
Topik:
artificial intelligence
;
robotics
;
reinforcement learning
;
layered learning
Fulltext:
5.pdf
(502.33KB)
Isi artikel
This paper introduces an integration of reinforcement learning and behavior-based control designed to produce real-time learning in situated agents. The model layers a distributed and asynchronous reinforcement learning algorithm over a learned topological map and standard behavioral substrate to create a reinforcement learning complex. The topological map creates a small and task-relevant state space that aims to make learning feasible, while the distributed and asynchronous aspects of the architecture make it compatible with behavior-based design principles. We present the design, implementation and results of an experiment that requires a mobile robot to perform puck foraging in three artificial arenas using the new model, random decision making, and layered standard reinforcement learning. The results show that our model is able to learn rapidly on a real robot in a real environment, learning and adapting to change more quickly than both alternatives. We show that the robot is able to make the best choices it can given its drives and experiences using only local decisions and therefore displays planning behavior without the use of classical planning techniques.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)