Anda belum login :: 23 Nov 2024 12:44 WIB
Detail
ArtikelBayesian Factor Analysis When Only a Sample Covariance Matrix Is Available  
Oleh: Hayashi, Kentaro ; Arav, Marina
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: Educational and Psychological Measurement vol. 66 no. 02 (Apr. 2006), page 272-284.
Topik: Press-Shigemasu model; structural equation modeling; Choleskey decomposition; likelihood; prior; posterior distribution; correlation matrix
Fulltext: 272.pdf (101.68KB)
Isi artikel(PKPM) In traditional factor analysis, the variance-covariance matrix or the correlation matrix has often been a form of inputting data. In contrast, in Bayesian factor analysis, the entire data set is typically required to compute the posterior estimates, such as Bayes factor loadings and Bayes unique variances. We propose a simple method for computing the posterior estimates of Bayesian factor analysis using only the sample variance-covariance matrix without the entire data set. The method is verified in terms of an existing data set.With our method, researchers will be able to apply Bayesian factor analysis when they find either a variance-covariance or a correlation matrix with standard deviations in the existing literature.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)