Anda belum login :: 23 Nov 2024 16:01 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Using transposition for pattern discovery from microarray data (in 8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery)
Bibliografi
Author:
Rioult, Francois
;
Boulicaut, Jean Francois
;
Cremilleux, Bruno
;
Besson, Jeremy
Topik:
microarray data
Bahasa:
(EN )
Tahun Terbit:
2003
Jenis:
Papers/Makalah - pada seminar internasional
Fulltext:
Using transposition for pattern discovery.pdf
(124.16KB;
0 download
)
Abstract
We analyze expression matrices to identify a priori interesting sets of genes, e.g., genes that are frequently co-regulated. Such matrices provide expression values for given biological situations (the lines) and given genes (columns). The frequent itemset (sets of columns) extraction technique enables to process di±cult cases (millions of lines, hundreds of columns) provided that data is not too dense. However, expression matrices can be dense and have generally only few lines w.r.t. the number of columns. Known algorithms, including the recent algorithms that compute the so-called condensed representations can fail. Thanks to the properties
of Galois connections, we propose an original technique that processes the transposed matrices while computing the sets of genes. We validate the potential of this framework by looking for the closed sets in two microarray data sets.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Lihat Sejarah Pengadaan
Konversi Metadata
Kembali
Process time: 0.171875 second(s)