Anda belum login :: 27 Nov 2024 04:52 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
K-nearest-neighbour non-parametric estimation of regression functions in the presence of irrelevant variables
Oleh:
Li, Rui
;
Gong, Guan
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
The Econometrics Journal vol. 11 no. 2 (2008)
,
page 396-408.
Topik:
k-nearest-Neighbour
;
Cross-validation
;
Irrelevant Variables
;
Simulations
Fulltext:
396.pdf
(109.73KB)
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
EE39.4
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
We show that when estimating a non-parametric regression model, the k-nearest-neighbour non-parametric estimation method has the ability to remove irrelevant variables provided one uses a product weight function with a vector of smoothing parameters, and the least-squares cross-validation method is used to select the smoothing parameters. Simulation results are consistent with our theoretical analysis and show that the performance of the k-nn estimator is comparable to the popular kernel estimator; and it dominates a non-parametric series (spline) estimator when there exist irrelevant regressors.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.03125 second(s)