Anda belum login :: 23 Nov 2024 19:50 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Estimating Optimal Feature Subsets Using Efficient Estimation of High-Dimensional Mutual Information
Oleh:
Chow, T. W. S.
;
Huang, D.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 16 no. 1 (Jan. 2005)
,
page 213-224.
Topik:
INFORMATION
;
optimal feature
;
subsets
;
estimation
;
high - dimensional
;
mutual information
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.12
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
A novel feature selection method using the concept of mutual information (MI) is proposed in this paper. In all MI based feature selection methods, effective and efficient estimation of high - dimensional MI is crucial. In this paper, a pruned Parzen window estimator and the quadratic mutual information (QMI) are combined to address this problem. The results show that the proposed approach can estimate the MI in an effective and efficient way. With this contribution, a novel feature selection method is developed to identify the salient features one by one. Also, the appropriate feature subsets for classification can be reliably estimated. The proposed methodology is thoroughly tested in four different classification applications in which the number of features ranged from less than 10 to over 15000. The presented results are very promising and corroborate the contribution of the proposed feature selection methodology.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)