Anda belum login :: 23 Nov 2024 04:12 WIB
Detail
ArtikelA Low-Complexity Fuzzy Activation Function for Artificial Neural Networks  
Oleh: Soria-Olivas, E. ; Martin-Guerrero, J. D. ; Camps-Valls, G. ; Serrano-Lopez, A. J. ; Calpe-Maravilla, J. ; Gomez-Chova, L.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 14 no. 6 (Nov. 2003), page 1576-1579.
Topik: artificial neural; low - complexity; fuzzy; activation function; artificial; neural networks
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.9
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelA novel fuzzy - based activation function for artificial neural networks is proposed. This approach provides easy hardware implementation and straightforward interpretability in the basis of IF - THEN rules. Backpropagation learning with the new activation function also has low computational complexity. Several application examples (XOR gate, chaotic time - series prediction, channel equalization, and independent component analysis) support the potential of the proposed scheme.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)