Anda belum login :: 23 Nov 2024 04:12 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
A Low-Complexity Fuzzy Activation Function for Artificial Neural Networks
Oleh:
Soria-Olivas, E.
;
Martin-Guerrero, J. D.
;
Camps-Valls, G.
;
Serrano-Lopez, A. J.
;
Calpe-Maravilla, J.
;
Gomez-Chova, L.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 14 no. 6 (Nov. 2003)
,
page 1576-1579.
Topik:
artificial neural
;
low - complexity
;
fuzzy
;
activation function
;
artificial
;
neural networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.9
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
A novel fuzzy - based activation function for artificial neural networks is proposed. This approach provides easy hardware implementation and straightforward interpretability in the basis of IF - THEN rules. Backpropagation learning with the new activation function also has low computational complexity. Several application examples (XOR gate, chaotic time - series prediction, channel equalization, and independent component analysis) support the potential of the proposed scheme.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)