Anda belum login :: 23 Nov 2024 09:57 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Existence and Learning of Oscillations in Recurrent Neural Networks
Oleh:
Townley, S.
;
Ilchmann, A.
;
Weiss, M. G.
;
Mcclements, W.
;
Ruiz, A. C.
;
Owens, D. H.
;
Pratzel-Wolters, D.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 11 no. 1 (2000)
,
page 205-214.
Topik:
oscillations
;
learning
;
neural networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
We study a particular class of n - node recurrent neural networks (RNN s). In the 3 - node case we use monotone dynamical systems theory to show, for a well - defined set of parameters, that, generically, every orbit of the RNN is asymptotic to a periodic orbit. We then investigate whether RNN s of this class can adapt their internal parameters so as to “learn” and then replicate autonomously (in feedback) certain external periodic signals. Our learning algorithm is similar to the identification algorithms in adaptive control theory. The main feature of the algorithm is that global exponential convergence of parameters is guaranteed. We also obtain partial convergence results in the n - node case.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)