Anda belum login :: 23 Nov 2024 12:26 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Neural Tree Density Estimation for Novelty Detection
Oleh:
Martinez, D.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 9 no. 2 (1998)
,
page 330-338.
Topik:
neural network
;
neural tree density
;
estimation
;
novelty detection
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.3
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this paper, a neural competitive learning tree is introduced as a computationally attractive scheme for adaptive density estimation and novelty detection. The learning rule yields equiprobable quantization of the input space and provides an adaptive focusing mechanism capable of tracking time - varying distributions. It is shown by simulation that the neural tree performs reasonably well while being much faster than any of the other competitive learning algorithms.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)