Anda belum login :: 27 Nov 2024 21:31 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Ultimate Performance of QEM Classifiers
Oleh:
Comon, P.
;
Bienvenu, G.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 6 (1996)
,
page 1535-1537.
Topik:
Performance
;
performance
;
QEM classifiers
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
Supervised learning of classifiers often resorts to the minimization of a quadratic error, even if this criterion is more especially matched to non linear regression problems. It is shown that the mapping built by a quadratic error minimization (QEM) tends to output the Bayesian discriminating rules even with non uniform losses, provided the desired responses are chosen accordingly. This property is for instance shared by the multilayer perceptron (MLP). It is shown that their ultimate performance can be assessed with finite learning sets by establishing links with kernel estimators of density.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)