Anda belum login :: 23 Nov 2024 15:32 WIB
Detail
ArtikelEffect of Probabilistic Inputs on Neural Network-Based Electric Load Forecasting  
Oleh: Ranaweera, D. K. ; Karady, G. G. ; Farmer, R. G.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 7 no. 6 (1996), page 1528-1532.
Topik: probabilistic thinking; probabilistic inputs; neural network - based; electric load; forecasting
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.1
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelThis paper presents a novel method to include the uncertainties or the weather - related input variables in neural network -based electric load forecasting models. The new method consists of traditionally trained neural networks and a set of equations to calculate the mean value and confidence intervals of the forecasted load. This method was tested for daily peak load forecasts for one year by using modified data from a large power system. The tests indicate that in addition to the confidence interval, the new method provides a more accurate mean forecast than a multilayer perceptron networks alone.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)