Anda belum login :: 19 Feb 2025 00:48 WIB
Detail
ArtikelExploring and Comparing The Best “Direct Methods” for The Efficient Training of MLP-Networks  
Oleh: Di Martino, M. ; Fanelli, S. ; Protasi, M.
Jenis: Article from Journal - ilmiah internasional
Dalam koleksi: IEEE Transactions on Neural Networks vol. 7 no. 6 (1996), page 1497-1502.
Topik: networks; direct method; MLP - networks
Ketersediaan
  • Perpustakaan Pusat (Semanggi)
    • Nomor Panggil: II36.1
    • Non-tandon: 1 (dapat dipinjam: 0)
    • Tandon: tidak ada
    Lihat Detail Induk
Isi artikelIt is well known that the main difficulties of the algorithms based on backpropagation are the susceptibility to local minima and the slow adaptivity to the patterns during the training. In this paper, we present a class of algorithms, which overcome the above difficulties by utilizing some “direct” numerical methods for the computation of the matrices of weights. In particular, we investigate the performances of the FBFBK - LSB (least - squares backpropagation) algorithms and iterative conjugate gradient singular - value decomposition (ICGSVD), respectively, introduced by Barmann and Biegler - Konig (1993) and by the authors. Numerical results on several benchmark problems show a major reliability and / or efficiency of our algorithm ICGSVD.
Opini AndaKlik untuk menuliskan opini Anda tentang koleksi ini!

Kembali
design
 
Process time: 0.015625 second(s)