Anda belum login :: 19 Feb 2025 00:48 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Exploring and Comparing The Best “Direct Methods” for The Efficient Training of MLP-Networks
Oleh:
Di Martino, M.
;
Fanelli, S.
;
Protasi, M.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 7 no. 6 (1996)
,
page 1497-1502.
Topik:
networks
;
direct method
;
MLP - networks
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
It is well known that the main difficulties of the algorithms based on backpropagation are the susceptibility to local minima and the slow adaptivity to the patterns during the training. In this paper, we present a class of algorithms, which overcome the above difficulties by utilizing some “direct” numerical methods for the computation of the matrices of weights. In particular, we investigate the performances of the FBFBK - LSB (least - squares backpropagation) algorithms and iterative conjugate gradient singular - value decomposition (ICGSVD), respectively, introduced by Barmann and Biegler - Konig (1993) and by the authors. Numerical results on several benchmark problems show a major reliability and / or efficiency of our algorithm ICGSVD.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)