Anda belum login :: 27 Nov 2024 05:04 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Improving Iris Recognition Accuracy via Cascaded Classifiers
Oleh:
Zhenan, Sun
;
Yunhong, Wang
;
Tieniu Tan
;
Jiali Cui
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Systems, Man, and Cybernetics: Part C Applications and Reviews vol. 35 no. 3 (Aug. 2005)
,
page 435-441.
Topik:
Biometrics
;
Blob Matching
;
Cascaded Classifiers
;
Iris Recognition
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II69.1
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
As a reliable approach to human identification, iris recognition has received increasing attention in recent years. The most distinguishing feature of an iris image comes from the fine spatial changes of the image structure. So iris pattern representation must characterize the local intensity variations in iris signals. However, the measurements from minutiae are easily affected by noise, such as occlusions by eyelids and eyelashes, iris localization error, nonlinear iris deformations, etc. This greatly limits the accuracy of iris recognition systems. In this paper, an elastic iris blob matching algorithm is proposed to overcome the limitations of local feature based classifiers (LFC). In addition, in order to recognize various iris images efficiently a novel cascading scheme is proposed to combine the LFC and an iris blob matcher. When the LFC is uncertain of its decision, poor quality iris images are usually involved in intra-class comparison. Then the iris blob matcher is resorted to determine the input iris' identity because it is capable of recognizing noisy images. Extensive experimental results demonstrate that the cascaded classifiers significantly improve the system's accuracy with negligible extra computational cost.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)