Anda belum login :: 23 Nov 2024 18:40 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Nonlinear Signal Separation for Multinonlinearity Constrained Mixing Model
Oleh:
Gao, P
;
Woo, W. L.
;
Dlay, S. S.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 17 no. 3 (May 2006)
,
page 796-802.
Topik:
non linear
;
non linear
;
signal separation
;
multinonlinearity
;
constrained
;
mixing model
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
In this letter, a new type of non linear mixture is derived and developed into a multinonlinearity constrained mixing model. The proposed signal separation solution integrates the Theory of Series Reversion with a polynomial neural network whereby the hidden neurons are spanned by a set of mutually reversed activation functions. Simulations have been undertaken to support the theory of the proposed scheme and the results indicate promising performance.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)