Anda belum login :: 23 Nov 2024 18:38 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Links Between PPCA and Subspace Methods for Complete Gaussian Density Estimation
Oleh:
Wang, Chong
;
Wang, Wenyuan
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 17 no. 3 (May 2006)
,
page 789-791.
Topik:
gaussian
;
PPCA
;
subspace methods
;
complete gaussian
;
density estimation
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
High - dimensional density estimation is a fundamental problem in pattern recognition and machine learning areas. In this letter, we show that, for complete high - dimensional Gaussian density estimation, two widely used methods, probabilistic principal component analysis and a typical subspace method using eigenspace decomposition, actually give the same results. Additionally, we present a unified view from the aspect of robust estimation of the covariance matrix.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)