Anda belum login :: 23 Nov 2024 20:48 WIB
Home
|
Logon
Hidden
»
Administration
»
Collection Detail
Detail
Continuous-Valued Probabilistic Behavior in A VLSI Generative Model
Oleh:
Chen, Hsin
;
Fleury, P. C. D.
;
Murray, A. F.
Jenis:
Article from Journal - ilmiah internasional
Dalam koleksi:
IEEE Transactions on Neural Networks vol. 17 no. 3 (May 2006)
,
page 755-770.
Topik:
probabilistic thinking
;
continuous - valued
;
probabilistic behaviour
;
VLSI generative model
Ketersediaan
Perpustakaan Pusat (Semanggi)
Nomor Panggil:
II36
Non-tandon:
1 (dapat dipinjam: 0)
Tandon:
tidak ada
Lihat Detail Induk
Isi artikel
This paper presents the VLSI implementation of the continuous restricted Boltzmann machine (CRBM), a probabilistic generative model that is able to model continuous - valued data with a simple and hardware - amenable training algorithm. The full CRBM system consists of stochastic neurons whose continuous - valued probabilistic behaviour is mediated by injected noise. Integrating on - chip training circuits, the full CRBM system provides a platform for exploring computation with continuous - valued probabilistic behavior in VLSI. The VLSI CRBM’s ability both to model and to regenerate continuous - valued data distributions is examined and limitations on its performance are highlighted and discussed.
Opini Anda
Klik untuk menuliskan opini Anda tentang koleksi ini!
Kembali
Process time: 0.015625 second(s)